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The effective medium approximation is one of the most popular approximations 
used for calculating the effective coefficients of linear composite media. When 
the same approach is applied to the case of power-law nonlinear composite 
media the obtained expression contains a function whose values are unknown. 
In order to determine the form of this function and to calculate some coefficients 
related to it, we calculate the electric field for the case of a single inclusion. The 
numerical solution is based on the relaxation method for solving differential 
equations, but involves some modifications due to the nonlinearity. After the 
solution of the differential equation the function and the coefficients are 
calculated and examined. The results differ considerably from those obtained 
earlier by simple approximations. 

KEY W O R D S :  The effective medium theory; nonlinear behavior; composite 
medium; strong nonlinearity; bulk effective moduli; bulk effective conductivity. 

1. I N T R O D U C T I O N  

Nonlinear composite materials have attracted much interest in the last few 
years. The problem of calculating the bulk effective properties of these 
materials is in general quite intractable, since it involves the solution of a 
nonlinear partial differential equation with coefficients that depend on posi- 
tion in a way that reflects the detailed microgeometry. Thus, a variety of 
approximalions have been devised to solve the problem in certain limits. In 
order to discuss a composite medium made of weakly nonlinear com- 
ponents, Stroud and Hui ~1~ used a perturbation expansion in order to 
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obtain results, exact to first order in the nonlinear (cubic) susceptibility of 
the components, for dilute concentrations of inhomogeneities. That discus- 
sion has been extended to nondilute concentrations of inhomogeneities, 
using mean-field theory. ~2" 3~ Scaling theories were developed for describing 
the critical behavior of such systems near a percolation threshold. ~4" 5~ 

For  composite media made of components that are strongly nonlinear 
Blumenfeld and Bergman ~61 obtained a result for the effective dielectric 
constant which is exact to second order in the fluctuations (contrast) of the 
dielectric coefficients of the components. Another approximation that was 
used is based on a variational method ~7 9~ which is not limited to special 
perturbation limits or to special types of nonlinearities. 

One of the most widely used approximations for calculating the bulk 
effective electrical conductivity of a two-component composite medium is 
the effective medium approximation (EMA), which was invented by 
Bruggeman in 1935/t~ Bruggeman's approximation applies without any 
change also to the dielectric permittivity, magnetic permeability, thermal 
conductivity, and chemical diffusivity coefficients, since the mathematical 
structure of the associated physical properties is the same as that of electri- 
cal conduction. 

Bruggeman's approximation was reformulated in a different way, ~ 
showing that the result does not depend on the kind of averaging used. The 
procedure was then generalized to the case of nonlinear properties of com- 
posites and applied to a case of a strongly nonlinear composite conductor. 
In that case each component exhibits an isotropic power-law relation 
between the electric field E(r) and the current density J(r), where the non- 
linearity exponent fl [see (2.1) below] has the same value in all com- 
ponents. The equation that was found to embody the EMA for the non- 
linear effective conductivity a,. contains an unknown function f (x ) ,  where 
x is the ratio between the nonlinear conductivity coefficients of the two 
components. The form of-the critical behavior of a,, near the percolation 
threshold was determined, and it was found to have scaling properties. The 
results included four constants, which are related to the behavior o f f ( x )  
for x near 0 and x near co. The exponents which characterize the critical 
behavior were found to depend upon fl, although the values obtained for 
them in this approximation are not expected to be accurate, just as in the 
linear case fl = 0 (see, e.g., ref. 12). 

In order to get an explicit form for the nonlinear EMA, we need to 
calculate the function f ( x )  for different values of x. Moreover, in order to 
complete the calculation of the scaling properties, the four constants men- 
tioned above also need to be determined. To achieve these goals, we need 
a detailed, explicit solution for the nonuniform field E(r) which is present 
when a single spherical inclusion is placed in an otherwise uniform host 
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medium and an external field is applied that is uniform far away from the 
inclusion. 

In this article we review the nonlinear EMA for continuous media 
which was derived in ref. 11. We then formulate an equivalent nonlinear 
EMA for conductance networks. The problem of a single inclusion is first 
tackled in the context of the nonlinear network model, where it is 
significantly easier than in the continuum case. After that we also solve the 
continuum problem of a single spherical inclusion in an infinite host 
medium, using a relaxation algorithm which was developed especially for 
this task. These solutions provide us with an evaluation o f f ( x )  and of the 
four constants for different values of the nonlinearity exponent for both the 
network model and the continuum system. Using these as building blocks, 
we can now apply EMA to any composite medium with a power-law non- 
linear constitutive relation of the form (2.1). 

2. N O N L I N E A R  E M A  

2.1. Rev iew of Nonl inear  E M A  for Cont inuous Media  

In this section we summarize some relevant results which were derived 
in detail in ref. 11. 

We consider a composite conducting medium where each component 
exhibits an isotropic power-law relation between the electric field E(r) and 
the current density J(r)  of the form 

J = a l E f E  (2.1) 

The nonlinearity exponent fl > - 1  has the same value in all components, 
and the difference between them is only in the value of the nonlinear 
conductivity coefficient a. The expression for the bulk effective nonlinear 
conductivity coefficient in this case is 

1 E(r) /~+-" 
(2.2) 

The determination of E(r) requires numerical solution of a nonlinear 
partial differential equation for the scalar potential ~b(r): 

V. (a(r) IVq~l ~ V~) = 0  (2.3) 

In order to obtain an EMA for at,, we consider a large volume V of 
a homogeneous conductor ao with a single spherical inclusion ai of volume 
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V,, ,~ V. Equation (2.3) cannot be solved analytically for this case, even 
when restricted to (9(V,,/V) terms. However, from the homogeneity proper- 
ties of ae(ao, al) we can conclude that a,, has the form 

a , . = a o + a o - - ~ f  +(9 \ v 2 j  (2.4) 

where f ( x )  is a function which remains to be determined. Imposing the 
consistency requirement that the average of a,. over the various types of 
inclusions be equal to a 0 leads to an equation that defines the EMA for the 
nonlinear effective conductivity a,.. The fluctuations which are averaged in 
this procedure are of order V , / V  and thus very small compared to ao; 
therefore it is immaterial what kind of averaging is used. In the case of a 
two-component composite the EMA equation is 

The percolation threshold p,. in this approximation can be easily found 
by considering the case of large contrast between the components.  Near  the 
threshold we expect to find a 2 ~ a,. ~ a~. Using these inequalities in (2.5), 
we obtain 

f (  ov ) (2.6) 
P" -- f (  ov ) -- f (  O ) 

In order to determine the behavior of ae near Pc, the forms o f f ( x )  
were determined for x near 0 and x near Go. For  small x =  ao/a~ it was 
shown that 

f ( x )  ~- f(O) -- a(fl + 1 ) x '/c/~+ i (2.7) 

1 . ,~  /IE(r)l/s+2 ) 

a =  lim 1 [ E(r) l~+2{aljcl~+21/~ls+t~/\ 
, dV  Ol - -  (2.9) 

o ~ J Eo \ g o /  O'0 / r  ~ 

Here the functions 0o(r) and 0,(r) are the characteristic functions of the 
host medium and of the inclusion, respectively. Both f (0 )  and a are (9(1), 
and f (0 )  > 0  since al > a o  for x near 0. 
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For large X=ao/a2 it was found that [note that, even though (2.8) 
and (2.11 ) appear to be identical, the local field E(r) is different, therefore 
also f ( m )  ~ f ( 0 ) ]  

b 
f (x)  ~_ f(  ov ) + -  (2.10) 

x 

f(oo)=-~,, dVO o 1 --1 (2.11) 

1 ( E(r) /~+2 
b = - ~ , j d V 0 2  ~ (2.12) 

As before, 0o(r) and 02(r) are the characteristic functions of the host 
medium and of the inclusion, respectively. Both f (oo)  and b are (9(1), and 
f (  oo ) < 0 since a2 < ao for x near oo. 

In Section 4 we will describe a numerical calculation of the electric 
field for the above-mentioned configuration: a small spherical inclusion 
embedded in a large homogeneous host medium. Using the solutions for 
E(r) at different values of x, we then compute the function f (x)  and 
evaluate the four coefficients f (0) ,  f (oo  ), a, and b for different values of p. 

2.2. N o n l i n e a r  EMA for  C o n d u c t a n c e  N e t w o r k s  

In this section we formulate an EMA for conductance networks in a 
way that is very similar to the one used for continuous media. Consider a 
three-dimensional simple cubic resistor networks that has a total of N.,. 
resistors oriented in parallel to the x axis, and similarly N,, and N_ resistors 
oriented along the y and z axes, respectively. A pair of equipotential plates 
perpendicular to the x axis and with potential difference d V determine the 
boundary conditions for the network. For a single nonlinear resistor we have 

I =  v, I Vf .  g (2.13) 

where I is the current through tithe resistor, V is the voltage across it, and 
g is the nonlinear conductance coefficient. 

The bulk effective conductance g,, of an inhomogeneous nonlinear 
network is defined as the nonlinear conductance of a single resistor such 
that if we replace all the resistors in the network with it, it will produce the 
same dissipation rate as in the actual inhomogeneous network. The dissipa- 
tion rate of a nonlinear resistor is 

P= I Vl/~+2.g (2.14) 
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Therefore we can compare the total dissipation rate of an inhomogeneous 
network to that of a homogeneous network with g,, for all resistors and 
obtain for the nonlinear effective conductance 

1 Vi /~+2 

g"=-~x~.v_ gi (2.15) 

where the sum is over all the resistors, V o = A V/N,., and V~ and g~ are, 
respectively, the voltage across and the conductance of the resistor i. 

In order to obtain an EMA for g,,, we will consider a conductance 
network in which all the resistors have the same nonlinear conductance go 
except for one resistor (henceforth to be called the inclusion), with conduc- 
tance g~, which lies along the x axis. Here, too, we cannot calculate g,, in 
closed form, but from the homogeneity properties ofg,,(go, g~) we conclude 
that g,, has the form 

1 / g o \  ( 1 )  g<.=go+go Sk )+c5 (2.16) 

where f ( x )  is a function which remains to be determined. Imposing the 
consistency requirement that the average of g,, over the various types of 
inclusions be equal to go, we get the following EMA equation for a 
network composed of two types of resistors in which the fraction of g~ 
resistors is p~: 

j (=<]  + l (=<" i :  o <2.1-,, 
Pl \ g l l  \ g2]  

As in the case of a continuous medium; we find for the percolation 
threshold 

j(~o) 
P"-f(m)-f(O) (2.18) 

As before, in order to determine the behavior of g,, near p,., we need 
to know the forms o f f ( x )  for x near 0 and x near ~ .  For  small x we 
observe that when go '~ g~, a qualitative consideration leads to the result 
that the magnitude of Vi, the voltage across a resistor, satisfies 

Vi /~+~ (g./gK for the inclusion g~ 

oc ~1 for a resistor go 
(2.19) 
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Expressing g; with the help of the characteristic function of the majority 
resistors, 0 o, and that of the inclusion, 0~, 

gi = goOo + gl Ot (2.20) 

we can rewrite (2.15) as 

g " l ( ~ o ) V i l : ~ + 2  (2 .21)  
g o - N ~  ~ 0o+ 0, Vo 

which is a function only of gt /go.  Using (2.19) to estimate the two terms 
in (2.21) and comparing the result with (2.16), we get, for x ~ 1, 

f ( x )  ~ f(O) - a(fl + 1 ) x'/~l* + i~ (2.22) 

f ( O ) = 2 0 o ( \ }  ViII~+2--I)Vo ] -'b vOoE Vi 11+2 --1 (2.23) 
.V . ~.7 V O  

a =  lim ~ 0 ,  Vi t~+2(g ' )  '1'+2'7'/~+'' 
.~,,/.~, -, o x ~ \ g o /  (2.24) 

where the sums ~.,., S .... include all resistors lying along the designated 
axes. Both f(0) and a are (9(1), and f ( 0 ) > 0  since g~ > go entails g,,> go. 

For large x we note that when go >> g2, the inclusion is actually an 
insulator, which leads to the following result for the magnitude of Vi: 

Vi / "r 
i-~o ] oc 1 for all resistors (2.25) 

Proceeding by analogy with (2.20)-(2.24), we write 

gi = goOo + gz02 (2.26) 

g~__:= 1 ~ 0o+ 0,_ ~o (2.27) 
go N,_ �9 . : ,_- 

a n d  finally eve get, for x > 1, 
b 

f ( x )  ~- f (  ~ ) + -  (2.28) 
x 

J ' ( m ) = ~ O o  ~ 1 + ~ 0 o  Vo - 1  (2.29) 

Vi /1+?- (2.30) b=2o,  
.'c 
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As before, both f (  ~ ) and b are (9( 1 ), while f (  ~ ) < 0 since g2 < go entails 

g,. < go. 

3. RESULTS FOR CONDUCTANCE NETWORKS 

3.1. Kirchhoff's Equations 

In this subsection we describe the method used for solving the equa- 
tions of the conductance networks and for the calculation of g,, and the 
EMA coefficients. 

In order to calculate g,, according to (2.15), we need to know the 
voltages across all the resistors in the network. In a three-dimensional 
simple cubic network there are six resistors around each internal node. If 
we take V; to be the voltage across a resistor, g; to be its nonlinear conduc- 
tance, and 1; to be the current through it, then the current conservation 
condition at an internal node becomes 

6 6 

I ; =  E V( ! + ' ' g ; = O  (3.1) 
/ = 1  ; = l  

These are just Kirchhoff's current equations for the nonlinear system. If we 
wish to generalize (3.1) for nodes on the sidewalls of the network, we can 
define fictitious zero currents for the side where there is no resistor. The 
boundary conditions for the system are derived from the uniform potential 
plates: The potentials at all nodes of one boundary differ by zl V from the 
ones at the opposite boundary. If we solve (31) for all the nodes with the 
given boundary conditions, we will have the voltages across all resistors. 
Using those voltages in (2.15), we will then calculate the effective 
conductance. 

3.2. The Relaxation Method 

Kirchhoff's equations express the fact that the potential at a certain 
node depends on the potentials at the six surrounding nodes. The common 
numerical method for this kind of problem is the relaxation method/TM 
Using this method, we calculate an updated potential for each node, using 
the previous values for the neighboring nodes. This procedure is iterated 
until convergence is achieved. The detailed procedure is as follows: Taking 
~b to be the previous potential of a node, ~b t to be the previous potentials 
at the surrounding nodes (i = 1 ..... 6), and ~ to be the corresponding solution 
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of Kirchhoff's equations for the potential at the central node, we calculate 
an updated potential at the central node ~o by 

~0 = ~ + ( ~ -  ~b) w (3.2) 

where w is a relaxation coefficient whose value lies between 0 and 2. This 
method is commonly used for linear problems. In that case, the relation 
between ~ and ~bi is a linear function. In our case that function is nonlinear 
and quite complicated; therefore ~ is evaluated numerically using the 
Newton-Raphson method. In order to use this method, we need to be able 
to calculate this function and its derivative everywhere. The Newton- 
Raphson method is usually applied iteratively; however, in our case, even 
if we found an exact local solution for ~ and ~o at each node, this solution 
would still be only an approximate global solution. Therefore, at each node 
only one step of the Newton-Raphson iteration is executed. 

The nonlinear function whose zero we want to find is 

6 

F(V)= ~ (Vi-  V)IVi- VI/' gi (3.3) 
i = l  

Using the function and its derivative, we obtain a new value for ~b at any 
node by 

F(~b) =~b+wZ6= ,  (~b;-~b)14,;-4~1/' g~ 
~~ ~-~--i ( p + l ) I ~ , . -  01/' g; 

(3.4) 

After the new value ~o is determined it is saved in an array of potentials. 
During the relaxation this process is executed for all the nodes of the 
network in each iteration. When it has converged we get the values of ~b 
that solve Kirchhoff's equations. We then use this solution to calculate the 
effective conductance of the network using (2.15), and also to calculate the 
other coefficients of the EMA. 

The parameters that were held fixed during all the calculations are the 
conductance of the host conductors and the network size, which was 20 
resistors in each direction. The parameters that were allowed to change are 
the nonlinearity coefficient fl and the conductance of the inclusion resistor. 

3.3. Testing the Algor i thm 

A set of numerical calculations was made, using double precision 
(eight byte) real variables, in order to test the numerical algorithm. In the 
linear case fl = 0 the effective conductance can be calculated in closed form 
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for a large hypercubic network where all the resistors are go except for one 
inclusion g~.t 141 For  a d-dimensional network we find that 

V l d 
Iio gl/go + d - 1  

(3.5) 

where V~ is the voltage across the inclusion. We can use this result together 
with Eq. (2.15) in order to obtain an explicit expression for the effective 
conductance ge, 

d gt - go 
g " =  1 + (3.6) 
go N,.gl + g o ( d -  1) 

We can also use (3.5) and (3.6) in order to obtain explicit values for 
a,b, f(O),  and f ( ~ ) :  

a = d  2 (3.7) 

b= ~ (3.8) 

f (0 )  = d  (3.9) 

d 
f (ov )  = -- d----i- (3.10) 

The results for g,. from numerical computat ions at d =  3 were com- 
pared with these exact expressions. The differences were found to be of 
order 10 -8. This can be compared to g, . /go-1 ,  which was about  10 -4, 
reflecting the fact that N,. = 203= 8000. 

3.4. Calculat ion of the E M A  Coeff ic ients  for  Conductance 
N e t w o r k s  

The aim of the main set of calculations was to compute the coefficients 
for different values of the nonlinearity exponent ft. In all the calculations all 
the resistors were equal except for one inclusion. The conductance of the 
host resistors was go = 1 and that of the inclusion resistor varied from 10-8 
to l06 by factor-10 steps. The calculations were executed for values of 
fl = 0, 1, 2, 3, using a relaxation coefficient w = 1.7, which corresponds to 
overrelaxation. 

Figure 1 shows the calculated coefficients a, b, f (0) ,  and f (  m ) for dif- 
ferent values of ft. The values obtained numerically for fl = 0 are very close 
to the exact results (3.7)-(3.10). 
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The values o f f ( 0 )  and f ( ~ )  were used to calculate the percolation 
threshold according to (2.18), and the results are displayed in Fig. 2 as a 
function of ft. 

Since the effective conductance was calculated for all cases, the func- 
tion f(x) could be found for all values of x that were used, with the help 
of (2.16). Using the calculated values of the function, it is possible to 
calculate an EMA effective conductance for a nonlinear network using 
(2.17), even when the contrast between the different conductances is not 
extreme. The calculated values o f f ( x )  as function of x=go/gt are dis- 
played in Fig. 3. 

4. R E S U L T S  FOR C O N T I N U O U S  M E D I A  

4.1. D isc re t i za t ion  and B o u n d a r y  C o n d i t i o n s  

The configuration for which we will solve is as follows: a sphere of 
radius R~ with conductivity a~ inside a spherical host with radius Ro and 
conductivity a0,  such that Ro ~ R i. A uniform external field E o is applied 
along the z axis (see Fig. 4). 

This configuration does not represent a homogeneous material on any 
scale, and therefore the intuitive concept of a bulk effective conductivity is 
somewhat problematic. Nevertheless, t7,, is still defined by the property of 
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Ro Eo 

Fig. 4. Schematic illustration of the configuration for which we solve. 

yielding the same total dissipation rate for a fictitious homogeneous system 
that is exhibited by the actual inhomogeneous one, and it is still given 
by (2.2). 

The problem exhibits azimuthal symmetry. Therefore, if we use spheri- 
cal coordinates, it is transformed into a two-dimensional problem, since the 
electric potential ~b(r, 0) is independent of the azimuthal angle cp. In order 
to solve the problem numerically, we must first discretize it. The electric 
potential ~b(r) will be calculated on a two-dimensional grid. Along one 
direction of the grid r changes by fixed increments, while along the other 
direction 0 changes by fixed increments. Thus, in the r, 0 plane we have a 
rectangular grid of points at which ~b(r) will be calculated. 

The physical problem is symmetric under reflection through the origin, 
with E.,., E,. transforming to -E.,., -E, . -  Therefore it is sufficient to solve 
just for the half-space 0 ~< 0 ~< re/2. For the r dependence there is no obvious 
symmetry so we have to solve over the entire region 0 ~< r ~< Ro. The grid 
is naturally divided into two regions. The first region, which represents the 
spherical inclusion where a ( r ) =  try, is 0 ~< r ~  R~. The second region, which 
represents the spherical host where a( r )=tro ,  is Rl ~<r~< Ro. 

Since the grid has four boundaries, we need four boundary conditions 
for ~b(r). From the above-mentioned symmetry of E, it follows that in the 
x, y plane, E must lie along the z axis. It tbllows that ~b is constant on that 
plane. We will take it to be zero, 

q~(r, 0 = re/2) = 0 (4.1) 
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Another boundary of the grid, which is also in the x, y plane, corresponds 
to the single point r =  0; therefore we get the second boundary condition 

~(r = 0, 0 ) = 0  (4.2) 

At r =  Ro we assume that the field distortion due to the inclusion is negli- 
gible; therefore the potential there is only due to the external field 

~b(r= Ro, 0) = -EoRo cos 0 (4.3) 

The only boundary for which the value of the potential is unknown is the 
z axis, where 0 = 0. However, we know that the field there must be parallel 
to the z axis; thus the 0 component of E vanishes, 

O~(r, 0) 
~J=o = 0 (4.4) 

We do not have to explicitly impose any continuity conditions at the 
interface: Those are automatically enforced when the partial differential 
equation is satisfied at the interface. 

4.2. Re laxa t ion  M e t h o d  

In order to calculate the effective conductivity, we have to solve (2.3) 
with the given boundary conditions. The method chosen for this purpose 
is based on the relaxation method. '~3' In this case we have to calculate a 
new potential for each point in the grid, using the old values of the poten- 
tial in the neighboring points, such that V. J -- 0. This procedure is iterated 
until convergence is achieved. The expression V. J is related to the electric 
potential by 

V. J=V. (a ( r ) [V~i /~  V~) (4.5) 

If we try to express V. J at a point of the grid using the potential there and 
in the neighboring points, we get a complicated nonlinear expression. The 
value of the potential at that point cannot be found in closed form. There- 
fore, in contrast with the relaxation method for linear equations, here we 
must again use the Newton-Raphson method to find the new value of the 
potential at a grid point. Again, we need to be able to calculate a function 
and its derivative everywhere. We are interested, of course in finding the 
zero of 

F(~i, j )  = V" J (4 .6)  
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where ~b~..j is the potential at the grid point (i, j) and F(q~.j) also depends 
on the potentials at neighboring points. In order to calculate F(~b;. j), we 
use (4.5), and since r and 0 change in the i and j directions, respectively, 
we get 

F(~,. j) 
(i + 1/2) 2 a,+ L/2..j ]E] {~+ i/2. ; E,.,+,, j - (i - 1/2) 2 a;_ i/2. j]g] {s_ E/2. j E,.,_ ,.,., 

i 2 J r  

s i n [ ( j +  1/2) AO] ai. i+ i/,_ IEI~j+ ,/2 Eo,. +,_~ 
+ 

i Jr  dO sin(j AO) 

s i n [ ( j -  1/2) AO] ai. j_ i,,2 ]El~sj_ i/2 Eo,.j_, _, 

i At" AO sin(j dO) 
(4.7) 

In order to calculate this expression at a point (i, j) we need to use values 
of E,. at two points, ( i+  1/2, j), ( i -  1/2, j), and values of E, at two other 
points (i, j +  1/2), (i, j -  I/2). In reality, these points are not found on the 
grid, which includes only integer-valued pairs (i, j). However, since the 
potential is known at all of these latter points, we define 

_ @ i . j - - ~ ) i + l , j  
Eri+12, j -  

r i+  I - r i  

~ i , . j -  ~i,j+l 
EoLj+I2 ~ r i ( O j +  I - -  O/) 

We also need to 
integer points. In 
Eo,+, ~j by averaging over four neighboring values like (4.8), 

E ~ (Eo,.j- +Eo,.J~,'-+Eo,+,.,-,'-+Eo,+,.J+,'-) 2 
IEI~+ J/2-;= ;'+' -"' + '-" 4 

(E,'~-,,_.j+ E,',.+,, j+ E,', ~, i+. + E,'~+,2j+I'~ 2 
E ~_.,+ ,/2 = . . . . . .  ! + Ea,.,+~: 

4 / 

(4.8) 

use [E[2=E~.+E~ at the same four fictitious or half- 
order to do this, we calculate quantities like E,..,+,.,, 

(4.9) 

(4.10) 

This averaging procedure is correct for the interior regions of the host 
and the inclusion, but is problematic at the interface, due to the discon- 
tinuity of E,.. If we take i = ih to be the maximal i index such that the point 
(i, j) is still inside the inclusion, then at points such as (ih_+ 1/2, j) we can 
use (4.9), since the averaging is over Eo, which is continuous at the bound- 
ary. On the other hand, at points like (i~, j +  1/2) we cannot use (4.10), 
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since the averaging is over E,., which has a jump discontinuity. Therefore, 
at those points we use a different scheme of averaging, with values of E,. 
taken only from points inside the inclusion 

(E'"~-t /2i+E"~ '/'- /+')2 E'- (4.11) 
"~ " - -  31- Oil,  j + I / 2  IEI,; ;+  i/2 = -  2 ' 

Note that a similar special definition is not needed for IEI i2,,+ ,. j+ i/2 because 
in that case (4.10) only uses values of E,. at points that are outside the 
spherical inclusion. 

Since F(r)i.j) is nonlinear and quite complicated, we use a numerical 
method to calculate its derivative: we first calculate the value of F for the 
current potential, then we add a small value 6 to the potential and 
recalculate F. In this way we obtain the derivative as 

dE _ F(d)~, j + fi) - F(~)~. j) 
F'(c)i" J) =- dO~..i fi (4.12) 

Once we have both F(q~.i) and F'(q}i,j) it is possible to calculate a 
value for the potential ~i. j that will depend also upon the potentials at 
neighboring points, 

F(fb~, ./) (4.13) 
~,. j = r)i. j r ' (?) , .  ~) 

The new value of the potential at (i, j )  is then determined, according to the 
relaxation coefficient w, as 

F(~/. j) (4.14) ~b,.., ..... = ~b;..i + (~i. j -  ~bi. j) w = q~i. j - ,.,; F'(q~i. i) 

After the new value for the potential is determined in this way, we can 
either save it in a temporary array until the calculation is finished for all 
the grid points or else update it immediately in the array of current poten- 
tials. The second method usually achieves faster convergence. During the 
relaxation this process is executed for all the inner points of the grid in 
each iteration. When it has converged we get the potential values that solve 
the equations. We then use this solution to calculate the effective conduc- 
tivity and the other coefficients of the EMA. 

The parameters that were held fixed during all the calculations are the 
conductivity of the host go=  1 and the ratio between the radius of the 
inclusion and that of the host R t/Ro=O.1. The parameters that were 
allowed to change are the nonlinearity coefficient fl, the conductivity of the 
inclusion a~, and the number of points in the grid. 
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4.3. Tests of the Algorithm 

Two sets of numerical computations were made in order to test the 
algorithm. Both calculations were for cases where we could estimate the 
results using other methods and compare them to the numerical ones. 

4.3.1. Calculation for Linear Conductivity. In the linear case 
fl = 0 the bulk effective conductivity a,. can be calculated in closed form if 
the radius of the spherical host is infinite. The potentials in the host and in 
the inclusion were expressed using Legendre functions as 

(~o(r,O)=(Ar+Bl)cosO in the host (4.15) 

~bl(r, O)= Cr cos 0 in the inclusion (4.16) 

In order to find the three unknowns A, B, and C we need three equations. 
Two of those are obtained from the continuity condition on the polar com- 
ponent of E and on the radial component of D. The third equation comes 
from the boundary condition at large distances ~bo(r, 0 ) = - E o r  cos 0 for 
r-~ oo. From the solution we calculated f(0) ,  f loe) ,  a, and b by integrating 
Eqs. (2.8), (2.11 ), (2.9), and (2.12). The expressions obtained for a and b do 
not depend on Ro, but the expressions for f (0)  and f (oo)  do. We assume 
that this solution is a good approximation even for a finite large host. 
Therefore we substitute a finite value of R0 in the expressions and get an 
estimated analytical solution for the same configuration that we solve 
numerically. 

The numerical calculations for the linear case were executed using two 
different contrasts, namely a~--10 h2 and el  = 10 -~2. Different grid sizes 
were used from 101 to 701 points in each direction. As expected, the results 
indicate that the numerical coefficients are closer to the estimated analyti- 
cal ones for the denser grids. Moreover, adding points in the r direction 
improves the results more effectively than adding points in the 0 direction. 
Since the remaining calculations are all executed using grids of 101 x 101 
points, we compare results for the present calculation using such a grid 
with the analytical results in Table I. 

The fact that even in the analytical calculation the EMA percolation 
threshold is not exactly 1/3 is due to the fact that the ratio Ro/R~ was 10 
instead of oo. On the other hand, the analytical values for a and b are 
accurate, since they are calculated using integration over the inclusion and 
therefore do not depend on the size of the host. 

From the table we conclude that for the grid size used we get very good 
results for the extreme values o f f ( x )  and for Pc, but that the evaluation of 

822/86/3-4-2 
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Table I. Numerical Computations Compared to 
Analytical Results for the Linear Case of an Isolated 

Spherical Inclusion 

Calculated coefficient Analytical v a l u e  Numerical value 

a,.(~l--*O) 0.9984995 0.998522... 
a~(al--,ov) 1.002998 1.003014... 
J'(oo} --1.5005 -1.48176... 
f(O) 2.998 3.021215... 
b 2.25 2.477179... 
a 9 7.455764 
p,. 0.333556... 0.329063... 

a and b is less accurate. When we used the denser grids the values obtained 
for a, b were considerably more accurate. 

4.3.2.  The Low Contrast  Case. When the distribution of com- 
ponent conductivities is very narrow, 8ai = ( o ' i - ) a ) ) ~ ( a ) ,  the bulk 
effective conductivity a,, can be expanded through second order in ~ai even 
in the nonlinear caseJ 6~ For  a single spherical inclusion a~ of radius R~ at 
the center of a larger sphere ao of radius R o this expansion leads to 

( x -  ,~ol~,) 

(R, 3 1) 
'+2(1 arcsinj'/('+l;/[('R,'/" 

(9 r 1 3 + 

As a further test of our numerical algorithm we compared numerical 
calculations for this case with the results of this expression. The calcula- 
tions were made for values o f f l =  1, 2, 3, 4 and for values o f x  = ao/~, = 1.1, 
1.01, 1.001, 1.0001, 1.00001. Since the results for the different values of fl 
were all alike, we present results only for one value of ft. In Table II  we 
show 1 - a , . / a 0  for different values of X=ao/a ,  when f l=4 .  

In this table the relative difference between the numerical result and 
the asymptotic approximation increases as x approaches 1. For  x ~> 1.001 
those differences are mostly attributable to the neglected terms in (4.17). 
When [1 - x [  < 10 -3 those differences indicate the limits of  accuracy of the 
numerical algorithm, which are due to the finite grid size. 
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Table II. Numerical  Computat ions Compared to Analytical  
Results for 1 - a t / a 0  in the Low-Contrast  Case When ~=4  
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x = a . / a l  Numer ica l  value Value from (4.17) 

1.1 9.35 x I0 -5 9.37 x I0 -5 

1.01 9.86 x 10 -~ 9.93 x 10 -6 

1.001 9.75 x 10 -7 9.99 x 10 -7  

1.0001 6.30 x I 0 - 8  10.0 x I0 -8 

1.00001 --3.90 x I0 -8 I0.0 x I0 -'~ 

4.4. Calculation of the Coefficients 

The aim of the main set of calculations was to compute the coefficients 
for different values of the nonlinearity exponent ft. In all the calculations 
the conductivity of the host was cr o = 1 and the conductivity of the inclu- 
sion varied from 10 -~2 to 10 ~z in factor-10 steps. The calculations were 
executed both for positive values of fl = 1, 2, 3, 4 and for negative ones 
fl = -0 .2 ,  -0 .4 ,  -0 .6 .  The number of iterations required changed with the 
values of fl and a~. In general the number of iterations was bigger for 
smaller values of/? and for bigger values of cry. 

Figure 5 shows the calculated effective conductivity versus x=cro/a  ~ 
for different values of beta. The results indicate that the effective conduc- 
tivity is closer to 1 for smaller values of ft. 

During the relaxation, at the end of each iteration, a total error was 
calculated as the integral of IV. JI. Every time that the error decreased by 
a given amount a new value was calculated for each of the coefficients. If 
the pth computed value of a certain coefficient C is denoted by C r, then the 
difference between the current value and the previous value is 
A C~, = C p -  Cp_ ~ and the ratio between two consecutive differences is 
m~,=ACp/ACp_~. It was found that in most cases this ratio does not 
increase with p; therefore an extrapolated difference or increment C ~ -  CI, 
could be calculated as follows: 

. . .  

= ACl,(mp+ l +rap+imp+2+ . "  ) 

(1_ 1) me- =ACp l - r a p  ~-AC.  1 - m ~  (4.18) 

These extrapolated increments were used to decide when to terminate the 
iterations. Moreover, after termination they were added to each coefficient 
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Fig. 5. 

1.025 

1.020 

0 1.015 

o o 1.010 

~ 1.oo5 

"'4., 

1.000 

0.995 I ~ ~ i I 

1E-15 1E-10 1E-05 1E+O0 1E+05 1E+10 
X 

[---p-=4 ~p=3 -~p=2 ~13=1 ----p=o ~p=-o.6] 

1E+15 

Calculated effective conductivity a,, plotted as a function of .v= ao/a  n for different 
values of beta. 

25 

8 

20 

15 

10 

0 

. ~ J J  

t / 

J j -  

0 1 2 3 4 

[ + calct lated -s- extrapolatedJ 

Fig. 6. Values o f f ( 0 )  plotted as a function of ft. The values that were calculated directly 
from the final potential are the crosses, and the extrapolated values are the empty squares. 



E M A  f o r  S t r o n g l y  N o n l i n e a r  M e d i a  475  

-1.4 

-1.45 

-1.5 

- 1.55 .-- 
.E -1.6 

-1.66 

-1.7 

-1.75 

-1.8 
-1 

D 

I I I 

0 1 2 3 4 

I + calculated -m- extrapolated I 

Fig. 7, Values o f . / ( ~ )  plotted as a function of [3. The values that were calculated directly 
from the final potential are the crosses, and the extrapolated values are the empty squares. 

22 

20 

18 

16 

~14 

12 

10 

8 

6 

-1 

L~+, 

I I I 

1 2 3 4 

[ + calctlated -e- extrapolatedJ 

Fig. 8. Values of  a plotted as a function of [3. The wdues that were calculated directly from 
the final potential are the crosses, and the extrapolated values are the empty squares. Note the 
difference between the values for negative [L 



4 7 6  Sa l i  a n d  B e r g m a n  

7 

6 

xas 

4 

3 

2 

-1 

J 
J f 

J 
. J  

s 

. f  

I I I 

0 1 2 3 4 

+ calculated -~- extrapolated]  

Fig. 9. Values of b plotted as a function of ft. The values that were calculated directly from 
the final potential are the crosses, and the extrapolated values are the empty squares. 

Fig. 10. 

0.600 

0.500 
"O 
0 

0.400 

c'- 0.300 
o 

00 0.200 

EL 

0.100 

O.525 

oi~,41 

0.377 

0.~ 

~o~4 

"~-~.~. 133 

0.000 r I I 
-1 0 1 2 3 4 

The calculated percolation threshold plotted as function of fl for a cont inuum 
system. 



E M A  f o r  S t r o n g l y  N o n l i n e a r  M e d i a  4 7 7  

in order to obtain an extrapolated value. The following figures show the 
coefficients calculated in this way. Figures 6-9 show the values off (0) ,  f (  oo ), 
a, and b as function of ft. Two values are shown for each coefficient. One was 
calculated clirectly from the final potential distribution, while the second is 
the extrapolated value. Evidently there is a significant difference between the 
two values only in the case of a, and even then only for fl < 0. Note  that the 
agreement of the two results only indicates good convergence of the relaxa- 
tion procedure and not whether the results are accurate: Inaccuracies due to 
the finite grid size in fact cause a, b to be rather inaccurate in the case fl = 0, 
as was explained earlier in connection with Table I. Using (2.6), we calculated 
p,. for the different values of ft. The results are plotted in Fig. 10. 

The effective conductivity was calculated in all cases. Using its value, we 
calculated the functionf(x) according to (2.4) for all values o fx  that were used. 
The values of this function make it possible to calculate an EMA effective 
conductivity for a nonlinear composite medium using (2.5) even when the 
contrast between the conductivities is not extreme. The calculated values of f (x)  
are displayed in Fig. 11. We tried to compare these values with the asymptotic 
expressions (2.7), (2.10) for small and large x. For small x the agreement was 
very good, but not for large x: Due to the smallness of the b/x term in (2.10), in 
practice its contribution is usually overshadowed by the errors in the numerical 
evaluations o f f (x )  andf(oo) ,  which are both of order V~/V_~ lO -3. 

25.000 

20.000 

15.000 

"0 
10.000 

___0 
~ 5.000 

0.000 

-5.000 

�9 1E-15 

%,c, 

I I I I I 
1E-10 1E-05 1E+O0 1E+05 1E+10 1E+15 

X 

Fig. 11. 

f ] 
[ - ' - -  [3----4 - -~ ~=3 ~ [3=2 -~- [3=1 ~ 1~=0] 

Numer ica l l y  ca lculated va lues  for f(x) as a function of  x for different values  of  fl in 
c o n t i n u o u s  media.  
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Table III. Numerical Calculations of the 
Coefficients Compared to Results of Variational Calculations 

for 13=2 

Calculated coefficient Our  value Ref. 15 

J'(oz) --1.6308... -0 .4814  
f(O) 10.6104... 1 
b 4.1810... 1.4567 
a 7.8149... 1.333... 

When we compare the results for a, b, f (0) ,  f (  oo ), and p,. obtained for 
the the continuum composite system to the results obtained for the discrete 
network model a striking fact emerges: Whereas in the linear case ( f l=  0) 
the results are identical, in the nonlinear cases they are not only different, 
but sometimes exhibit opposite behavior as function of ft. Thus, in the con- 
tinuum system a increases and p,. decreases with increasing fl (see Figs. 1 
and 2), while in the network model a decreases and p,. increases with 
increasing fl (see Figs. 8 and 10). 

A different approach has recently been used to calculate the coef- 
ficients for the nonlinear EMA. c ,5~ In that approach, trial functions based 
on solution of a linear problem were used to approximate the potential for 
a nonlinear composite with fl =2.  These had some free parameters that 
were determined by minimizing an energy integral like (2.2). The optimized 
trial functions were used to estimate the values o f f ( x )  for very large and 
very small x, and consequently to obtain values for f (0) ,  f ( ~ ) ,  a, and b. 
The values of the coefficients which we obtained in the numerical calcula- 
tions for fl = 2 are very different from the ones found in ref. 15 using the 
variational method, as shown in Table III. 

We conclude that the use of linear solution trial functions apparently 
leads to unacceptably large errors in the calculation of these coefficients. 

5. D ISCUSSION 

In this work, a nonlinear partial differential equation was solved 
numerically in order to calculate certain coefficients and the function f ( x )  
for the effective medium approximation of nonlinear composite media. The 
coefficients obtained for the linear case fl = 0 mostly compared very well 
with analytically calculated coefficients. Also, the results for a low-contrast 
nonlinear case were compared to analytical results with excellent agree- 
ment. It was shown that, if more precise results are required, then the dis- 
cretizing grid in (r, 0) must be made more dense, particularly in the r 
direction. 
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We also developed a similar EMA for nonlinear conductance networks 
and calculated (numerically) the various coefficients and the function f(x).  
In contrast with the situation in linear systems (fl = 0), a comparison of the 
continuum and the network result shows that they are quite different, 
sometimes even in their qualitative behavior as functions of ft. These 
differences deserve further study. They indicate that the use of discrete 
network models for nonlinear continuum composites should be pursued 
with great caution. 
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